Let's Review

Complete the table listing outcomes when finding the sum of two dice.

+	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Write the probabilities as fractions, decimals, and percents.

1.	P (7)		
	$\frac{1}{36}$.027777	2.7777%
2.	P (odd)		
	$\frac{1}{2}$.5	50%
3.	P (more than 6)		
	$\frac{21}{36} = \frac{7}{12}$.583333	58.3333%
4.	P (more than 6 <u>or</u> eve	en)	
	$\frac{30}{36} = \frac{5}{6}$.83333	83.3333%
5.	P (more than 6 and e	ven)	
	$\frac{9}{36} = \frac{1}{4}$.25	25%

Make and complete a table listing outcomes when finding **the product of two spins**. (red = 1, yellow = 2, green = 4, blue = 5)

Write the probabilities as fractions, decimals, and percents.

6.	P (1)		
	$\frac{1}{16}$.0625	6.25%
7.	P (odd)		
	$\frac{4}{16} = \frac{1}{4}$.25	25%
8.	P (more than 10)		
	$\frac{4}{16} = \frac{1}{4}$.25	25%
9.	P (more than 2 <u>or</u> or	ld)	
	$\frac{14}{16} = \frac{7}{8}$.875	87.5%
10	. P (more than 3 <u>and</u> e	even)	
	$\frac{10}{16} = \frac{5}{8}$.625	62.5%

Biology rules!

Complete a tree diagram and a sample space chart for problems 1 and 2.

1. What is the probability that a family will have two boys if they have two children?

2. What is the probability that a family will have two boys and a girl (in no particular order) if they have three children?

3. What is the probability that a family with three children will have a boy first, then a girl, and finally a boy? Clue: Use the chart from problem 2 to answer this.

P (B,G,B) $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$ 4. How many possible outcomes are there for a family of four children?

2 choices, 4 children

$2^4 = 16$ outcomes

5. What is the probability that the first child in any family will be a girl?

P (girl) =
$$\frac{1}{2}$$
 or 50%

I could be a biologist!

Key terms: <u>phenotype</u>: physical appearance (example: eye color) <u>genotype</u>: genetic makeup (examples: BB, Bb, bb)

homozygous: same (example: BB or bb) **heterozygous**: different (example: Bb)

<u>dominant</u>: uppercase letter (B) <u>recessive</u>: lowercase letter (b)

To determine the phenotype (physical appearance) of someone, you can cross traits of potential parents to find the *theoretical probability* of a certain trait being passed on to the offspring. Using a Punnett square is an easy way to do this by using the genotypes (genetic makeup) of the parents.

Complete the Punnett square to determine the probability of each event:

C1055. (Cat)

homozygous dominant – black-haired homozygous recessive – white-haired black (BB) White (bb)

	В	В
b	Bb	Bb
b	Bb	Bb

1. P (BB)	2. P (bb)	3. P (Bb)
0	0	100%

Cross: (human) heterozygous dominant – curly-haired homozygous recessive – not curly-haired Curly (Cc) Not curly (cc)

	С	с
с	Cc	сс
с	Cc	сс

4. P (curly)

 $\frac{1}{2}$, .5, 50%

5. P (not curly) $\frac{1}{2}$, .5, 50%

Create Punnett squares for the following problems:

What if you looked at a second-generation offspring (homozygous recessive = cc) and crossed it with a person with the same genotype (cc)? What would be the theoretical probability for the following:

6. P (Cc)	7. P (CC)	8. P (cc)

0%	0%	100%

	c	c
c	сс	сс
c	сс	сс

9. A widow's peak hairline is dominant; a straight hairline is recessive. If the mother is heterozygous for the widow's peak and the father is homozygous recessive, what is the probability that their offspring will have a widow's peak? Show your work.

Mom – heterozygous (Ww) Dad – homozygous (ww)

	W	W
W	Ww	ww
W	Ww	ww

Answer:
$$\frac{2}{4} = \frac{1}{2} = 50\%$$